和差问题
已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
鸡兔同笼问题
【口诀】:假设全是鸡,假设全是兔。多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36,有脚120,求鸡兔数。求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12
浓度问题
(1)加水稀释
【口诀】:加水先求糖,糖完求糖水。糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
【口诀】:加糖先求水,水完求糖水。糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
路程问题
(1)相遇问题
【口诀】:相遇那一刻,路程全走过。除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
【口诀】:慢鸟要先飞,快的随后追。先走的路程,除以速度差,时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。所以追上的时间为:6/3=2(小时)。
和比问题
已知整体求部分。
【口诀】:家要众人合,分家有原则。分母比数和,分子自己的。和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。
差比问题(差倍问题)
【口诀】:我的比你多,倍数是因果。分子实际差,分母倍数差。商是一倍的,乘以各自的倍数,两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。
工程问题
【口诀】:工程总量设为1,1除以时间就是工作效率。单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。1减去已经做的便是没有做的,没有做的除以工作效率就是结果。
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?[1-(1/6+1/4)X2]/(1/6)=1(天)
植树问题
【口诀】:植树多少颗,要问路如何?直的减去1,圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?路是直的。所以植树120/4-1=29(颗)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?路是圆的,所以植树120/4=30(颗)。
年龄问题
【口诀】:全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。除以分配的差,结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
(m.zxxk.com转载并发布)
您需要登录后才可以评论, 登录| 注册
于诗词盛宴中看见书香霞浦2024-05-28
闽南网推出专题报道,以图、文、视频等形式,展现篮球比分直播:在补齐养老事业短板,提升养老服